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1. Introduction

The scope of this project dealt with the investigation of the requirements to support
distributed computing of scientific computations over a cluster of cooperative workstations.
Various experiments on computations for the solution of simultaneous linear equations were
performed in the early phase of the p[roject to gain experience in the general nature and
requirements of scientific applications. A specification of a distributed integrated computing
environment, DICE, based on a distributed shared memory communication paradigm has
been developed and evaluated. The distributed shared memory model facilitates porting
existing parallel algorithms that have been designed for shared memory multiprocessor
systems to the new environment. The potential of this new environment is to provide
supercomputing capability through the utilization of the aggregate power of workstations
cooperating in a cluster interconnected via a local area network.
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Clusters of Cooperating Workstations

The great majority of scientific applications require a fairly large amount of memory to
execute a task. If a task is to be partitioned into threads (sub-tasks) that are executed in



parallel, memory sharing is very desirable since it allows sharing variables among threads
within the same task. Shared memory multiprocessor systems have been the predominant
platform selected for executing large scientific applications for these reasons.

Workstations, generally, do not have the computing power to tackle complex scientific
applications, making them primarily useful for visualization, data reduction, and filtering as
far as complex scientific applications are concerned. There is a tremendous amount of
computing power that is left unused in a network of workstations. Very often a workstation is
simply sitting idle on a desk. A set of tools can be developed to take advantage of this
potential computing power to create a platform suitable for large scientific computations.
The integration of several workstations into a logical cluster of distributed, cooperative,
computing stations presents an alternative to shared memory multiprocessor systems. In this
project we designed and evaluated such a system.

Attached to this report are three papers published or accepted for publication, resulting from
this research project. These articles are:

1. Hasan S. AlKhatib, Qiang Li, Chi-Jiunn Jou, Tiekun Chen and Hassan Arafeh "DICE
- a Distributed Integrated Computing Environment for Multi-threaded Parallel
Processing”, Proceedings of the Third International Systems Integration Conference,
Sao-Paulo, Brazil, August 15-19, 1994, pp 612-621.

2. Chi-Jiunn Jou, Hasan S. AlKhatib, Qiang Li and Tiekun Chen "Coherency Protocol and
Algorithm of the DICE Distributed Shared Memory”, Proceedings of the ISCA
International Conference on Parallel and Distributed Computing Systems, Las Vegas,
NV, October 6-8, 1994. pp 796-801.

3. Chi-Jiunn Jou, Hasan S. AlKhatib and Qiang Li "Two-Tier Paging and Its Performance
Analysis for Network-based Distributed Shared Memory Systems”, accepted for

publication in the IEICE Transactions on Information and Systems.

2. DICE Overview

DICE is a computing environment for executing multi-threaded tasks on a cluster of
networked workstations. In DICE, threads of a parallel task may run on separate
workstations sharing the same virtual address space. Threads communicate with each other
using shared memory. An overall system structure of DICE is shown in Figure 1.

DICE consists of three interactive subsystems: a distributed shared memory (DSM), a parallel
scheduler (PS), and a distributed run-time subsystem (DRS). DSM provides mechanisms for
sharing distributed memory among threads of a parallel task and hence supports the
underlying computing and communication paradigm. PS provides tools to initiate both local
and remote threads and to coordinate their execution over different workstations. DRS
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System structure for DICE

provides the programmers interface to develop parallel tasks as well as the run-time
environment for their execution.

3. Distributed Shared Memory

In DICE, the physical memories of individual workstations in a cluster are treated as
resources for the virtual space of a multi-threaded parallel task. Pages of the address space of
a task can be shared among the threads of the same task. A task consists of multiple threads
that can run on different workstations in a cluster simultaneously. The virtual memory of
DICE is divided into private and shared spaces. Private space is local to a single workstation,
and is not shared among threads. An example of private space is the stack of a thread. Shared
space is global to all workstations, and is shared among all threads of a parallel task. Shared
space is further divided into read-only code and read-write data spaces. The initial
implementation of DICE will only support the shared data space.

DICE presents a new distributed shared memory design to attack the problems of false
sharing and thrashing. False sharing may occur in a typical distributed shared memory system
such as Ivy[1], since its consistency or access unit (eg. per word) is less than the sharing unit
(per page). The single-write nature of its coherency protocol may cause a “ping-pong”
behavior between multiple writers of a shared page, or the thrashing problem. To overcome



these problems, Mach[2] uses a shared memory server to perform the fault scheduling via a
queueing mechanism[3]. Mether[4,5] avoids these problems through the use of the
inconsistency. Clouds[6] avoid these problems by using a single-write-single-reader strict
coherence semantics. Mirage[7] reduces the effect of these problems by using a time window
scheme, in which the system guarantees that the writer of a page retains access to a page for a
fixed period of time. Munin[8] minimizes these problems by using multiple type-specific
coherency protocols.

To overcome these false sharing and thrashing problems, DICE DSM uses a hybrid memory
granularity and supports multiple coherency protocols. Shared memory is structured as a
two-layer paging system. The higher layer is a page, which is the same as the one in an existing
system. The lower layer is a paragraph, which is a small fixed-sized memory region within a
page. The memory sharing unit is a page, while the coherency unit is a paragraph. Each page
in the shared address space is divided into several small equal-sized paragraphs. Each
paragraph uses one and only one specific protocol at a time. The protocol used on a
paragraph can be changed to adapt to new application requirement. The default protocol
used on a paragraph is that of inconsistent memory, which only provides memory sharing
without coherency. Other coherency protocols include write-invalidate, write—update,
write-read-migrate, home-read-write, release~update, and entry-invalidate.

Write-invalidate, write—update, write-read-migrate, and home-read-write protocols
provide a strict consistency on copies of a shared paragraph. They resemble the
read-replication, full-replication, migration, and central algorithms in [9] respectively. Both
release-update and entry-invalidate protocols provides weak consistency memory model on
copies of paragraph. The weak consistency memory model is different from the strict
consistent memory model in that it does not guarantee memory coherency without the use of
explicit high-level synchronization operations. Parallel programs, therefore, would need to
impose an ordering on accesses to shared memory by using synchronization operations. This
protocol treats shared memory accesses differently from synchronization variable accesses.
The model supports two types of synchronization accesses: acquire and release. Similar to the
software release consistent protocol used in [8], release—update protocol ensures that all
previously modified data is updated before the release is performed on a synchronization
variable. Similar to the entry consistent protocol used in [10], entry-invalidate protocol
ensures that a consistent copy of paragraphs are pre-fetched when the acquire or entry of a
synchronization variable is performed.

DICE DSM is similar to Munin[8] system, since both of them use multiple type-specific
coherency protocols. However, the kinds of protocol support and their designs are different



between them. More significant difference between them are the memory structure and
granularity. DICE DSM uses fixed-sized paragraph flat memory space, while Munin uses
variable-size object structure memory space. The advantage of using fixed—sized paragraph
is that it allows the DSM to be implemented in hardware like MemNet [11]. This will improve
the performance significantly, and is the final prototype of DICE DSM.

DICE separates synchronization mechanism from shared memory. It supports two kinds of
synchronization variables locks and barriers. Whereas locks are used primarily for access
control, that is, to resolve competition among parallel threads, barriers are used for sequence
control, that is, to ensure correct timing among cooperating threads. Other kinds of
synchronization variables can be built on top of them. DICE uses distributed queueing
schemes for both lock and barrier synchronization protocols.

4. Parallel Scheduler

DICE PS is a self optimizing application specific scheduler. It is responsible for thread
scheduling and synchronization. The PS is implemented as a thread within the parallel task.
Each parallel task has one PS running on the workstation where the task initially start to run.
This special thread is created during application load-time.

When an application needs to create another thread or to terminate itself by joining with
other threads, it passes control of the execution to the PS. The PS will find the fastest way to
run the application by using the information in the task execution dependence tree, which is
created as an auxiliary file during the compiling of the source program.

The PS decides whether the local workstation has enough resources to run the different
threads, which threads to send to remote workstations to run, and which remote workstations
to send them to. It uses several tools to make intelligent decisions at run time. Those tools
are: CPU load estimator, network load estimator, an intelligent database, and the bidding
process.

The CPU load estimator runs on every workstation on the network and keeps track of the
load on that workstation. The network load estimator monitors the traffic on the network,
and helps the parallel scheduler in avoiding heavily loaded networks. A small and efficient
database records thread performance on each workstations under different CPU and
network load conditions. This database helps the bidding process by giving the workstations a
reasonable estimate of the expected run times of various threads.

When the parallel scheduler decides that it is best to send some threads to a remote
workstation to run, it needs a way to pick those workstations. Instead of forcing other,



possibly heavily loaded, workstations to take some of the threads, the parallel scheduler asks
for help through the bidding process. It simply asks for help in running a given thread and tells
the other workstations about the memory and CPU requirements of the thread. This
information is found in the intelligent database. The detail design of PS is based on our
previous work [12].

S. Distributed Run-Time Subsystem

DRS transforms the DICE DSM from a flat space into an object-oriented structured space.
DICE DRS consists of a set of tools that implement the DICE. Application Programmer’s
Interface, API, provides users with programming tools to develop and execute DICE
multi-threaded applications. The tools used during program development include a parallel
language and its compiler, library interface functions, and a linker.

A new Object-Oriented Dataflow language(OODL) will be designed used as the parallel
language used in DICE. One of the important features of object-oriented programming is
information hiding and encapsulation [13,14]. It provides a higher level of data abstraction in
modeling real world objects. Such concepts are helpful in designing parallel programs [13]. In
general, parallel programs are difficult to design because the programmer must consider
multiple execution threads instead of a single thread. All possible interactions among the
threads must be considered. Also, parallel programs are hard to maintain because a simple
change may affect the interaction pattern and result in global consequences. Information
hiding helps in reducing possible interactions that need to be considered, while data
encapsulation help in minimizing the maintenance effort when program changes are needed.

While the object—oriented model provides a high level of programming abstraction, it does
not naturally exploit parallelism of applications constructed with objects. A dataflow model
can expose and exploit the maximum amount of parallelism, as well as express data
dependence from different levels of abstraction in a very natural way. The combination of the
object oriented and dataflow concepts makes it easier for programmers to design large scale
multi-threaded parallel programs, and to build re-usable concurrent software modules.

The OODL language, in DICE, will be an extension of the object-oriented programming
language C+ +. Dataflow constructs will be added to allow programmers to express
parallelism explicitly. The parallel compiler can be realized using a preprocessor to translate
the extended source code into C+ + programs, which in turn are compiled into object code
using an existing C+ + compiler.

The run-time library interface functions provide a collection of library routines that are
linked with each parallel program. They are invoked to support the service requests made by



system processes at run-time. The OODL compiler will use these functions to realize the
parallelism expressed in the application programs. These functions can also be used by the
application directly.

6. Conclusions
The key results accomplished in this project include:

1. Adesign of a distributed shared memory system for distributed networked computing that
solves the problem of false-sharing. The DSM employs a two-tier paging scheme and a
set of management protocols and algorithms suitable for hardware support within the
architecture of a workstation.

2. The DSM scheme was evaluated analytically. The results verify the validity of benefit of
the two-tier paging scheme in solving the problem of false-sharing.

3. The DSM was alo simulated using the Block Oriented Network Simulator, BONeS, and
was driven by a trace from a scientific application chosen from the Stanford’s SPLASH
benchmarks. The results of the simulation confirmed the results of the analytical work
and also verified the utility of the use of the two-tier paging schem.

The papers attached to this summary report contain further details of the work performed
under this project.
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Coherency Protocol and Algorithm of The DICE Distributed Shared Memory

Chi-Jiunn Jou, Hasan S. AlKhatib, Qiang Li, and Allen Tiekun Chen
Computer Engineering Department
Santa Clara University
Santa Clara, CA 95053

Abstract

DICE (Distributed Integrated Computing Environment)
DSM (Distributed Shared Memory) is an experimental sys-
tem, being developed at Santa Clara University, which sup-
ports the execution of multiple threads on a cluster of net-
worked workstations. This Paper presents the coherency
protocol and algorithm of DICE DSM, which is a nove! ap-
proach to the design of the virtual-memory based DSM. In
DICE DSM, the shared memory uses a two-iler paging sys-
tem. The first tier, page, is the common page used in an oper-
ating system. The second tier is called a paragraph, which isa
smailer fixed—sized unit of memory contained within a page.
The introduction of paragraphs improves system performance
by reducing the probability of false sharing as well as the size
of the unit of information transferred over the network for
maintenance of memory coherency.

Keywords: coherency protocol and algorithm. distib-
uted shared memory, local area network.

1. Introduction

A Distributed Shared Memory (DSM) system supports
the sharing of a virtual address space among processes run-
ning on loosely—coupled processors. A number of DSM sys-
tems over LANSs have been developed (8). Among them, Ivy
(51 is implemented on a network of Apollo workstations. The
memory is paged, and copies of pages may be replicated in
different hosts. Strict coherency semantics are used, and the
memory coherency is maintained by a write-invalidate with
dynamic ownership protocol. The owner of a page is located
via either a centralized manager, fixed distributed managers,
or an individual host which forwards the request. vy is used
for applicadons employing muiti~threaded tasks. All threads
share the same virtual address space. Faise sharing may occur
in this system, since its consistency or access unit (e.g. word)
is less than the sharing unit (page). In addition, the single—
write nature of its protocol may cause a "ping—pong" behavior
between muitipte writers of a shared page.

To overcome false-sharing and thrashing, some systems
employ special schemes. Clouds (7] avoids them by using a
single-writer—single~reader smict coherence semantics. Mi-
rage (3] reduces thrashing is by using a time window scheme,

“This wark was supported by NASA—Ames Research Center grants
number NCC 2-644 entitled "Parallei Processing for Scientific Com-
putations”.
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in which the system guarantees that the writer of a pageretains
access (0 a page for a fixed period of time. Munin [2] handles it
by using multiple consistency protocols and software release
consistency. Mether (6] reduces false sharing and thrashing
through the use of the incoherent memory.

DICE (Distributed Integrated Computing Environ-
ment)(1] presents a novel approach to handle the problem or
false sharing and thrashing. The shared memory is structured
as a two—tier paging system. The first tier, cailed page, is the
page commonly used in an operating system. The second tier
is called a paragraph, which is a smaller fixed—sized block of
memory within a page. Paragraph is the coherency unit. The
introduction of paragraphs improves system performance by
reducing the probability of false sharing as well as the size of
the unit of information transferred over the network for main-
tenance of memory coherency.

An overview of the DICE DSM architecture is given in
section 2. Section 3 presents the memory coherency protocoi.
The algorithm for realizing the complete DSM protocol is
presented in section 4. Section 5 discusses the expected sys-
tem performance and concludes.

2. The DICE DSM Architecture

DICE is an experimental distributed computing system
which aims at providing a cornputing environment for the ex-
ecution of multi~threaded tasks. A paralle] task may consist
of multipie threads that can be scheduled to run on a cluster of
workstations simultaneously. A thread is an active program
entity that provides the notion of a computation. Threads on
separate workstations also share the same virtual address
space, and communicate with each other using shared
memory. Synchronization of threads accessing shared re-
sources is done using functions provided by a distributed run-
time library.

Figure | shows the sysiem structure of DICE. It consists
of three interactve subsysiems. DRS (distributed run—<ime
subsystem) provides users with programming tools to deveiop
and execute DICE multi-threaded applications. DSM (dis-
tributed shared memory) provides the underlying communi-
cauon and computing paradigm for threads of a parallel task.
PS (paralle} scheduler) is a self-optimizing application-spe-
cific scheduler, and is responsible for thread scheduling and
synchronization.

In addition to a host processor and memory, cach node in
DICE also has a network processor and a Distributed Shared
Memory Managemenr Unit (DSMM U). DSMMU is an exten-
sion of the traditional MMU which supports paragraph valida-
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Figure {. System Architecture of DICE

tion/invalidation to achieve efficient management of the
DSM. When data is not available locally and needs to be
fetched from a remote host, the DSMMU triggers a special ac-
cess fault. otherwise, the DSMMU performs the traditional
TLB operauons.

3. Coherency Protocol

In DICE, a parallel task consists of multiple threads that
run on a cluster of workstations (hosts), simuitaneously.
Shared data can be distributed and replicated on the physical
memory of the members of a cluster. The DSM system sup-
ports the sharing of virtual pages, and maintains coherency
among replicated data copies across the network. A parallel
task has a root host, on which it was first loaded and executed.
The root host maintains the state information for all shared
pages used by the task. Other hosts in the cluster maintain the
state information for the shared pages that are currendy in
their local physical memories.

In DICE each shared page of a parallel task has a fome
host. A home host maintins the state informadon for its
pages, and ensures that the last copy of a page is not purged,
and keeps track of all copies of the paragraphs of its pages.
Other hosts in the cluster that have a copy of a page keep a
pointer of the home host. When a thread makes an attempt to
access a page for which it does not have a copy, it communi-
cates with the home host of the respective page in order to
compiete the memory access twansaction. When a host does
not know the home host for a certain page, a home—info fauit
will be miggered and a home—info request will be sent 1o the
root host. The root host replies with the information about the
home host for the requested page. If the home host is not yet
assigned, the root host will assign the first requesting host as
the home host for the requested page. The root host will then
update its database and send to the requesting host a reply in-
forming this assignment.

The memory coherency of DICE DSM is maintained on
the paragraph level. A paragraph can simultaneously be read
by muitiple hosts, but it can only be written by one host at a
time. Access rights to a paragraph can be read-write, regad-
only, or none. An owner host is the most recent host that have
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read—write access to that paragraph. The ownership of a para-
graph may be transferred from one host to another. There is
no ownership when two or more hosts have read-only access
rights to that paragraph. The Information about the ownership
of a paragraph is maintained at the home host of the page con-
taining the paragraph.

When a read operation is issued to a paragraph by a host
with none rights, a read—dara fault will be triggered and a
read—dara request will be sent to the paragraph's home host.
When a write operation is issued to a paragraph by a host with
none right, a write—daza fauit wiil be tnggered and a wrire—da-
ta request will be sent to the paragraph’s home host. When a
write operation is issued to a paragraph by a host with read-
only access right, a write—access fault will be triggered and a
write—access request will be sent to the paragraph’s home
host. In each case the home host directly or indirectly re-
sponds with the requested information.

At initialization, a home host is the default owner host for
ail paragraphs within its respective pages. Any other host wiil
send a remote request to the home host when it ries to access a
paragraph of this page. If a read—dara request is received, the
home host will return a reply containing the most recent copy
of the desired paragraph when it is the owner host or there is no
owner host of that paragraph. The access rights of both home
and requesting hosts are changed to read—only. If the home
host is not the owner host, it will forward this read—dara re-
quest to the owner host of that paragraph. The latter changes
its access right to read—only, and then sends to both home and
requesting hosts a reply containing the most recent copy of
that paragraph. After it receives the reply, both home and re-
questing hosts changes their access right to read—oniy. Home
host will aiso reset the owner host of that paragraph to nore. If
it is the requesting host, the home host will directly send the
read—dara request 1o the owner host. The latter changes its ac-
cess right to read—only, and then sends back a reply which con-
tains the most recent copy of that paragraph. Having received
this reply, the home host changes its access right to read—only
and resets the owner host of that paragraph to none.

If a write—data request is received, the home host will re-
turn a reply containing the most recent copy of the desired
paragraph if it is the owner of this paragraph. If multiple valid
copies exist, the home host will send invalidaze requests to all
hosts holding the copies, and wait for confirmations from ail
of them before returning the reply. Upon receiving the invali-
daze request, cach host changes its access right of that para-
graph t0 none and returns its confirmation to the home host.
The access right of the home host is then changed to none,
while the requesting host becomes the owner host and its ac-
cess right is changed o read-write. If the home host is not the
owner host, it will forward this wrire—dara request ta the own-
er host of that paragraph. The latter changes its access right 10
none, and then directly sends to the requesung host a reply
containing the most recent copy of that paragraph. After re-
ceiving the reply, the requestng host changes its access right
to read—write and sends a confirmation message to the home
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host. Having received this confirmation message, the home
host updates its database and records that the requesting host
becomes the owner host of that paragraph. If the home host is
the requesting host, it will directly send the write~daza request
to the owner host. The latter changes its access nghtto none,
and then sends back a reply which contains the most recent
copy of that paragraph. Having received this reply, the home
host changes its access dght to read-write and becomes the
owner host of that paragraph.

If a wrire—access request is received, the home host will
rewrn the write—access confirmation when it is the owner of
that paragraph. If multipie valid copies exist, the home host
will send invalidate requests to all hosts (except the request-
ing one) holding the copies, and wait for confirmations from
all of them before returning the confirmation message. Upon
receiving the invalidate request, each host changes its access
right of that paragraph to none and returns its confirmation to
the home host. The access right of the home host is then
changed to none, while the requesting host becomes the owner
host and its access right is changed 1o read—wrire. If the home
host is the requesting host, it wiil directly send the invalidase
requests © all hosts (except the requesting one) holding the
copies and wait for confirmations from all of them. Upon re-
ceiving the invalidare request, each host changes its access
right 10 none and rewrns its confirmation to the home host.
The home host then changes its access right to read-write and
" becomes the owner host of that paragraph.

Figure 2 shows the state diagram representing the loca-
ton of a valid paragraph. This state diagram reflects the pro-
tocol described above. Atany time, the Jocation state of a vaj-
id paragraph is either none, ar home host, at owner host, or ar
multiple hosts. The state is initially set to none when a home
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host has not yet been assigned. A fome—info fault and request
made by any host forces the root host to assign the requesting
host to become the home host. The state is then changed to ar
home host. In this case the home host is the owner of the para-

graph.

a read—data or a wrire—data fauit occurs. A read-dara fauit
and request at any non—home host causes the paragraph o
uansit to the ar muitiple hosts state. In this case there is no
owner host and multiple hosts have valid copies ( with read—
only access rights) of the paragraph. Note that these multiple
hosts always include the home host. A wrire—data fault and
request causes the paragraph to transit to the ar owner host
state, where the requesting host becomes the owner host of the
paragraph.

The paragraph will leave the at multiple hosts state when
either a write—access or a write—dara fault occurs. A wrire—
access or a wrire—data fault and request at any other non-
home host causes the paragraph to transit to the ar owner host
state. A write-access fault and request at the home host
causes the paragraph to transit (o the ar home host state. A
read—dara fault and request at any other non—home host wiil
still keep the paragraph in the ar muitipte hosts state. Note thar
a read—data or a write—data fault will never occur at the home
host, since a home host has a valid copy of the paragraph (with
read—only access rights) in the ar muitipie hosts state.

-~ The paragraph may leave the ar owner hosr state when ei-
ther a read—dara or a write—dara fauit occurs. A read—dara
fault and request at any other host causes the paragraph to
transit to the ar muinple hosts state. A write—data fault and
request ac the home host causes the paragraph to transit to the
ar home host state. A write—dara fault and request at any other
non-home host causes a change of ownership, buz the para-
graph will still be in the ar owner host state.

4. Coherency Algorithm

To support the above protocol, a Page rable (PT) and a
paragraph table (ParT) are used to maintain the state infor-
mation about shared pages and paragraphs. Each DICE appli-
cation maintains its own set of these tables. In addition to the
address mapping information and flags, 2T also maintains the
information about the location of home host of each shared
page. This location information is denoted by the home host
idennifier or hid. ParT maintains the information about the ac-
cess rights to each paragraphs (acc). The ParT of the home
host also maintains the location of the owner host of a para-
graph (oid), and the set of hosts (excluding the home host)
which have read—only copies of the paragraph (copyser).

The coherency algorithm handles various kinds of para-
graph validation faults as described in section 3. These faults
include home-info, read-dara, write—data, and write—access
faults. We divide the algorithm into four parts, corresponding
to the four fauit types. Each part of this algorithm consists of a
fault handler and its server, as illustrated in Figures 3 t0 6 for
the respective fauit type. Note that p and g, which are used
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within the algorithm, denote the current page and paragraph
numebers. respectively.

home—info tauit handier:
sand home—nta request (0 root host;
recenve home—info/home=—assign reply from root hose
Teste a PuT lor p;
IF { homne—assign confinmaton i3 receved)
3EGIN
PTipl.hid = myses:
FOR paragrapnhiinp 0Q
PurTli].ot = mysei:
ParTTil.copyset = (};
ParTli].ace = read—vre:
END DQ:
END
ELSE /™ home—inio reply is received */
BEGIN
PTp].hid = the assigned home host;
FOR pasrsgraph i in o0 DO
PwrTli].acc = none;
END 0O;
ENOD
renuTY;

home—into tault sarver:
iF (p is not yet assigned with a home hosty)
SEGIN /* *nore” state - > *ar home hast” state *f
PTip).hid = raquesting host
create a ParT forp
FOR paragraoh i n p 0O
Py T(llace = none;
o sand home—as8ign CONTNAon 10 requesting host
[+
ELSE /* “at home host” state — no state change *f
send home-do reply (o requesing host
retum;

Figure 1. The aigorthm 10r handing NOme=-+10 tauts

5. Discussions and Conclusions

We have presented the memory coherency protocol and
algorithm of DICE DSM. The coherency protocol for this
two~tier paging system is now being simulated in software.
The performance of DICE DSM system has been studied us-
ing an analytical model [4], which derives an expression for
the speedup of the parallel part of an application (or S5, ). In
this analysis, a high—speed and low-iatency ATM LAN is cho-
sen as the underline piatform, and the queuing time on the net-
waork is assumed to be negligible. The memory access unit is
assumed (0 be four bytes (or one word). Each page has P bytes
and k paragraphs per page. An applicadon is executed by N
hosts, and uses M bytes of shared memory space. The behav-
ior of an application is represented by the percentage of data
memory accesses for total instructions (denoted by d); the
probabilities of read and write faults (denoted by N, and N
which are the number of read faults and write faults per
1,000,000 memory references per host); temporal locality
(denoted by %+, which is the number of times that the same
paragraphs accessed continuously by a host); and spatal
locality factor (denoted by X:, which is the probability of a
certain region of shared memory being accessed by a specific
host). The temporal locality %+ is further represented by a
step uniform distribution (with parameters Ny, N, , and g,
which are the starting pointer, ending pointer, and window siz-

oy
-

Read_data parsgraph fault handler:
1P (1 am home host)
8EGIN f  /* “al owner nost” state —> A muitiple hosts” siate °/
send read_data request 10 ParTQ]. ot
recene road_data reoty from ParT[g].ond:
ParT{gj.cooysat = {ParT(g].ad}:
ParTgj.ond = none:
END
ELSE
BEGIN
send read_data request 10 PTIpl.hid:
recerve read _cala reqly rom owner host
END;
upcate local copy of g;
ParT[g}.acc = read —onty;
unblock hast procassor;
rotum:

Rend_dsta paragraph fauit server:
iF (1 am home host)
8EGIN /* “atmuitinie hosts” siate — no state change */
IF (no owner host)
BEGIN
sond read_data reply 0 requesting host:
ParT(g).copyset= ParT{gl.copyset+{requestung host);

ELSE IF {| am owner host)
BEGIN /* “at home host” state —> “af Mutipie hasts” state *f
ParTig).acc = resd—oniy;
send read_cat reply (O requesting hast;
ParT(g).copyset = {requesung host}.
ParT(g).0id = nona:
END
ELSE /* awner host is not me */
BEGIN /® “at owner host” staze — > "2t muitipie hosts* stats */
1orward read_data request 1o ParTig).oid:
biock pr g future jor g
recame rend_cata reply rom owner host,
update local copy of g;
ParTlgj.acc = rasd—only;
ParTlg|.conysat = {Pant(g].ouirequestng host};
Part(g).ou = none:

END
END
ELSE /* ! am owner host but not home host =/

BEGIN

Part{g].acc. = read—only;

IF {recuesting host is home host}

send resd_data repty 10 home host
ELSE

END
reamy

Figure 4. The aigonithm for handling read_cats paragraph {aults

send read_dsta reply t0 both home and requesting hosts;
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e of this step), which approximates the bell-like normal dis-
tibution reflecting intuition that the chance of a memory
location being accessed by a host decteases as the distance
grows from the previously accessed location.

The effects of changing S, on system structure and
application behavior has been studied, and some of these re-
sults are shown below. Figure 7 shows that the gainin S, be-
comes smailer and smaller as the network data rate R, in-
creases. This may justfy the above assumption that the
queuing time on the network is negligible in high—speed and
low—latency network. Figure 8 shows that S, decreases as

processor speed R, increases. Note that the total execution
time for an application will stll be reduced asR, increases,
although §, decreases.

Figure 9 shows that S, increases as the number of para-

graphs per page, k. increases up (0 a certain point. After that
point, S, slightly decreases as k further increases. Further-




Write_data peragraon faut handler:
IF (1 am homae nost}
BEGIN /* *at owner host” stats — > “at home host™ state */
send wims_oata recuest 1o Par{gl.od:
racane wne_data recty trom ParTlgl.ond:
Parg{g|.ca = myseit

send wris_data request 10 PTIp).hidt;
racerve wnte_Gata regly {rom owner NOST:
END:
upaste local copy of g,
ParT]g].acC = resd ~wanw:
uNBIOCK hOst DroCeSsor:
lF(Iamno(mrmnosundreoﬁrsnoﬂmmPT[pl.rid)
send wime_data confumation 10 PTpj.hid:

rensy;
wm_dnup.-gnaﬁ(wumor.
IF (1 am horne hosT)
BEGIN
IF {no awner host)
BEGIN /™ *af muiiose hosts” state — > °‘at awner host” stale */
send invasidation requast (o all hosts in ParT(g].copyser
block p g tuturs rsquests for g;
adh confir

PurTigl.acc = none;

send winte_data regty 1 requesting host

PasT(g].copysat = {};

PurTIgj.oxd = requestrx) host
cX tuure

pr q for q.
END
ELSE IF ( am owner hast)
BEGIN * *at home host” stale — > “at owner host” staie =/

ParT(gl.ace = none;
send wite_daz reply 10 (equasting host,
ParT(g].ond = requesong host
END
ELSE /* owner host is nat me °f
BEGIN /= “at owner host” state — na state changs */
forward write_data request o ParTig].out:

L from r g host.

E1SE /* | am owner hast but nat home host *f
BEGIN
ParTig).acc = none;
send wrte_data reply (0 /6Quesing host
ENOD
e,

Fgure 5. The sigonthm for handing wire_cala paragraph faults

more, S, is approximately the same for a fixed paragraph
size, which is P/k. This behavior demonstrates usefuiness of

the use of a paragraph with a smaller granularity than a page.
Figure 10 shows a similar bepavior, for S, in relationship
with the number of hosts V.

The analysis of this performance model demonstrates the
effect of using paragraph which has a smailer granularity than
a page. This smaller granularity reduces the probability of
faise sharing and the amount of data to be transferred over the
network. The performance of DICE DSM is aiso going to be
evaluated by a trace—driven simulation model, which will
take consideration of network queuing delay and give more
realistic resuits.

The concept of using paragraph is different from that of
using cache line or from the ones just using small page size.
Cache-based DSM has been used in multiprocessor systems,
which needs to build their own interconnected network inter-
face and use their own message-based communication

-
Pl
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Handle writs—4ccees parsgraph {aultc
iF {1 am hame hast)
BEGIN 1* *af muilipie hosts” state ~ > “at home host” state */
send invalidabon request 10 ai hosts in ParT(g].copysst
receve s invalidaton CONAMMaLONS;

parT(g].copysm = (};

RIS

R

ParTg).oid = myseit !

END -3
ELSE =
BEGIN £

send wite_acress request 1o PT(pf.hua:
raceve access confumauon from PTTp|.hwa;
ENO:
PuT(gl.ace = read—wms;
uUNDIOCK NOSt PrOCesION
e
Write_access paragraph fauit server 0
1 "al muitipie hosts” state ~ > "af Owner host” state */ ~
send invalidation request 10 ak hosts (except requasung nost) it ParTgl.copysae
recarve al ivalidabon confirMmanons;
ParT(g|.cooyset = {};
ParTlgj.acc = none;
send acCess CONBManon (o requesing host;

»

[N

BV TRt SN

ParT{g).ond = requesung host ~x

return? s
invaildation server: I
PurTig).acc = none: P g =

send invakdanon confirmation to home hosT =t

retum? - -

.

=2

Fgure 8. The aigorthm for nanaling wte parag tauhs 1 |
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500 OF POOR QUALITY

scheme. In contrast, paragraph-based or page—based DSM
used the systems over LANS, using the existing network inters
face with standard packet—based or cell-based network co I
munication protocols. As compared with small page si Z
paragraph reduces the comp iexity of the shared memory _
agement due to the use of small size of page tabie and the tw
layered hierarchical page/paragraph structures while allowin
a host to continue using the larger size of page as the treads)
current memory design in uniprocessor computer systen
This reduction of complexity is also due to the using of ho
hosts in the protocol. which ailows easily to locate the desire:
memory unit while distributing the management of sha
memory over the hosts on a LAN.
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A Two-Tier Paging Scheme for Network-based Distributed Shared Memory Systems

Chi~Jiunn Jou, Hasan S. AlKhatib, and Qiang Li

Abstract — Distributed computing over a network of workstations continues to be an illusive goal. Its
main obstacle is the delay penalty due to network protocol and OS overhead. We present in this paper a low
level hardware supported scheme for managing distributed shared memory (DSM), as an underlying paradigm
for distributed computing. The proposed DSM is novel in that it employs a two-tier paging scheme that re-
duces the probability of false sharing and facilitates an efficient hardware implementation. The scheme em-
ploys a standard OS page and divides it into fixed smaller memory units called paragraphs, similar to cache
lines.

An application address space is viewed as consisting of a shared data region, an unshared data region, a
stack region and a code region. Code, stack and unshared data regions are handled by the OS in the standard
manner without modification. The proposed scheme manages the shared data regions only. A hardware exten-
sion of a traditional MMU, Distributed MMU or DMMU, is introduced to support the DSM. Shared memory
coherency is maintained through a write-invalidate protocol. An analytical model is built to evaluate the sys-
tem sensitivity to various parameters and to assess its performance.

Keywords — distributed shared memory; false sharing; hardware support for distributed computing;

memory coherency protocol; performance evaluation; networks of workstations.

1. Introduction
Despite the tremendous progress made in local area networking over the past decade and a half, the

operating system and network protocol technologies have yet to address the main obstacle to distributed
computing, namely the delay due to the network overhead. Network speed has reached several
hundreds of Mbps, but the real issue is the network overhead latency in addition to sustained through-

put.

*This work was supported by NASA-Ames Research Center grants number NCC 2~644 entitled "Parallel Processing for
Scientific Computations”.



The problem consists of a myriad of sub-problems, and is not simple to resolve. Itrequires a system-wide
consideration on the full integration of networks into the operating system, and a re~examination of network
protocols and the overall system architecture, including hardware support for both network protocols and the
OS. This integrated view is underway in a project at Santa Clara University, called DICE, a Distributed Inte-
grated Computing Environment [1]. DICE supports a distributed shared memory paradigm, DSM. This paper
presents the design and performance of DICE DSM.

A number of DSM systems based on LANSs have been developed over the past decade[18]. Among them,
Ivy [13]is implemented on a network of Apollo workstations. The memory is paged, and copies of pages may
be replicated in different hosts. A multiple—readers and-single writer strict coherency semantics is used on the
page level. Memory coherency is maintained viaa dynamic ownership protocol with a write-invalidate proce-
dure. The owner of a page is located using either a centralized manager, a group of fixed distributed managers,
or the individual host which forwards the request. Ivy is designed for multi-threaded applications. All threads
share the same virtual address space. False sharing may occur in this system, since its consistency or access
unit (e.g. word) is less than the sharing unit (page). In addition, the single—writer nature of its protocol may
cause a "ping—pong” behavior between multiple writers of a shared page, leading to thrashing.

The problems of false-sharing and thrashing have been addressed by other DSM systems. Clouds [15]
avoids them by using a single-writer—single-reader strict coherence semantics introducing instead significant
blocking delays. Mirage [9] reduces thrashing by using a time window scheme, in which the system guaran-
tees that the writer of a page retains access to a page for a fixed period of time, suffering again from blocking
delays. Munin [3] handles it by using multiple consistency protocols and software release consistency, hence
placing the burden on the user. Mether [14] eliminates false sharing and thrashing by ignoring memory coher-
ency altogether, leaving its burden to the application software.

DICE represents a novel approach to handling the problem of false sharing and thrashing. The shared por-



tion of memory is structured as a two-tier paging system. The first tier is a normal page, and the second is
called a paragraph, which is a smaller fixed—size block of memory within a page. Coherency is maintained at
the level of a paragraph. The introduction of paragraphs improves system performance by reducing the proba-
bility of false sharing as well as the size of the unit of information transferred over the network for maintenance
of memory coherency. A Distributed Memory Management Unit, DMMU, an extension of the tradition-
al MMU, is designed to support the paragraph validation, and a special network controller is used to
support the accesses to the remote memory and the maintenance of memory coherence.

Section 2 of this paper gives the overview of the DICE architecture. The design of the DICE distributed
shared memory is described in section 3. An analytical model and the expected system performance are pre-

sented and discussed in section 4. Section 5 concludes this work and compares it to other approaches.

2. Overview of the DICE Architecture

DICE is an experimental distributed environment for executing multi—threaded tasks. A parallel task may
consist of multiple threads that can be scheduled to run simultaneously on a cluster of workstations. Threads
executing on separate workstations share the same virtual address space, and communicate with each other
using shared memory. Synchronization of threads accessing shared resources is done using functions provided
by a distributed run—time library.

DICE consists of three interactive subsystems. The DSM provides the underlying communication para-
digm among threads of a parallel task. The DRS (distributed run—time subsystem) provides users with pro-
gramming tools to develop and execute DICE multi-threaded applications. The PS (parallel scheduler) is a

self—optimizing application-specific scheduler, and is responsible for thread scheduling and synchronization.

3. Design Issues of the DICE DSM

DICE DSM is designed for a cluster of workstations connected via a high—speed, low-latency local area
network. The architecture of a node in a DICE system is shown in Figure 1. Each node consists of a host
processor and a physical memory module. The traditional MMU is replaced by a DMMU. The network inter-

face is attached directly to the memory bus and contains a network processor and a dual ported memory visible



Host Processor VA: virtual address

PA: physical address
‘ A VA I/D: instruction & data path
D DMMU
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I/O Bus D Network Processor
* ‘ Memory
other VO’s disk ipackets
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Figure 1. The Architecture of a DICE Node

both to the host and network processors, simultaneously. The dual ported memory holds data structures for

managing the shared memory.

3.1. Programmer’s View of DICE DSM Environment

In DICE, a parallel task consists of multiple threads that can run on a cluster of workstations (nodes), simul-
taneously. Memory pages required by each thread, whether code or data, are allocated physical memory
blocks, at the respective node, where the thread is running. Shared data pages are distributed and repli-
cated among the nodes as needed by the threads. The DSM system is designed to support the sharing of
data pages. The DSM system also maintains the coherency among replicated data copies.

Each parallel task has a root node, on which it was first loaded and executed. The root node main-
tains state information for all pages, including shared pages used in the application, while other nodes
maintain the state information for the pages that are loaded in their local systems.

Code and non—shared data pages of a thread are loaded in the physical memory of the node where



the thread is scheduled for execution. Shared data pages, on demand, are first loaded into the physical
memory of the node. That node becomes the home node for the page. A home node maintains the com-
plete state information for its pages. It ensures that the last copy of a page is not purged, and keeps track of all
copies of paragraphs belonging to its pages. Other nodes in the cluster, that have a copy of a shared page,keepa
pointer to the page’s home node. When a thread makes an attempt to access a page for which it does not have a
copy, it interacts with the home node of that page in order to complete the memory access. When a node does
not know the home for a certain page, a home—info fault is triggered and a home—info request is sent to the root
node. The root node replies with the information about the home node for the requested page. If ahome is not
yet assigned for the page, the root node assigns the first requesting node the status of home for that page. The
root node then updates its table and sends the page to the requesting node. The requesting node, upon receivin g

the page and the assignment of home status, updates its page table and creates a paragraph map table for that
page.
3.2. Coherency Protocol

The memory coherency of DICE DSM is maintained at the paragraph level. A paragraph can simulta-
neously be read by multiple nodes, but it can only be written by one node at a time. Access rights toa paragraph
can be read-write, read-only, or none. An ownernode of a paragraph is the node that has read—write access to
that paragraph. The ownership of a paragraph may be transferred from one node to another upon demand.
There is no owner for a paragraph, when two or more hosts have read—only access rights to that paragraph. The
Information about the owner of a paragraph is maintained by the home node of the page containing the para-
graph.

When a read operation is issued to a paragraph by a node with none rights, a read fault is triggered and a
read request is sent to the paragraph’s home. When a write operation is issued to a paragraph by a node with
none rights, a write—data fault is triggered and a write—data request is sent to the paragraph’s home. When a
write operation is issued to a paragraph by a node with read—only access rights, a write-access fault is triggered

and a write—access request is sent to the paragraph’s home. In each case the home directly or indirectly re-



sponds with the requested information. The coherency of paragraphs is basically maintained through a write-

invalidate protocol. The details of this protocol and its algorithm is shown in [11].

3.3. Management of Shared Memory

Page and paragraph tables are used to maintain the state information for shared pages and their paragraphs,
respectively. Each DICE application maintains its own set of these tables. A Page Table (PT), similar to a
traditional page table, provides the information about mapping the virtual addresses of pages to their corre-
sponding physical addresses, at their respective nodes. A Paragraph Validation Table (PVT), maintains the
information about the access rights of the page’s paragraphs. Each entry of a PVT contains a 2-bit field main-
taining the access rights of the local node to the respective paragraph. Note that there is no address translation
for paragraphs. Each node keeps a Page Table for Home information (PTH), which maintains the information
about the homes for its shared pages. Each home node of a page maintains a Paragraph Table (ParT) for that
page containing a pointer to the current owner of each paragraph and a list of nodes with read—only copies of
the paragraph. There is only one ParT for a page in the system. It is maintained by the home node of that page.
The PT and PVT are maintained in the dual-ported memory, inside the LAN interface. They are used by both
host and network processors. The PTH and ParT are maintained in the network subsystem, and are only used
by the network processor. Figure 2 shows the data structures for these tables.

DMMU is an extension of the traditional MMU. It is designed to support paragraph validation for efficient
handling of distributed shared memory. When data is not available locally and needs to be fetched from a
remote node, the DMMU triggers special access faults via an embedded hardware unit, PVLB (Paragraph Vali-
dation Lookaside Buffer) — to validate the access rights of paragraphs. The DMMU performs the traditional
TLB operations for all non—shared pages as well. When the DMMU does not find the entry it needs in its TLB,
it fetches the entry from the appropriate PT in memory. When an entry is loaded from the PT into the TLB, all
entries of its associated PVT (2 bits per paragraph) are simultaneously fetched and stored into the associated

PVLB. When an entry of the TLB is replaced, all entries of its associated PVLB are also replaced. Note, there

are no PVLBs for non—shared pages.



In Dual—ported Memory:
PT: PVT:
R >
0 ' 0
1 ' 1
n pin | flags | S| pPVT R kL acc rights
: ) pointer to PVT
' shared
physical page frame number
In Network Memory: (for home only)
PTH: > ParT:
0 . 0
1 ! 1
* ! *
n| H | hifj r PP ?IT """""""" k| oid | copyset
[ ) [ t :
X X pointer to ParT ' .. copyset
. ’ (if home) owner id pyse
! home id
home
(set to 1 if local node is home)
Figure 2. Page and Paragraph Tables for Shared Pages in DICE

Figure 3 shows the structure of the TLB and the PVLB. Each entry in the TLB contains an address tag, a
physical page frame number, flags, and an S bit. The S bit is used to distinguish shared pages from non-shared
pages. Each TLB entry of a shared page has an associated PVLB, which has k two-bit access rights fields,
where k is the number of paragraphs within a page. The virtual address is grouped into three fields: a page
number, a paragraph number, and a paragraph offset. The page number is used as a key to match the address
tags in the TLB, while the paragraph number directly addresses the PVLB entries corresponding to the same
paragraph number. The latter operation will simultaneously select n PVLB entries, where 7 is the number of
PVLBs in the DMMU. Each PVLB has an associated logic L, which validates the access rights of the refer-
enced paragraph. By checking the stored two-bit access rights field and the current memory access type R/W,
logic L generates a Trap signal. The Trap signal is ON when any paragraph validation fault occurs. The Trap

causes a system trap and requires the software to distinguish the type of the current access fault and resolve it.
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If there is no Trap, the physical access to the paragraph proceeds without interruption. The function of logic L
is shown in the table inside Figure 3. The S bit of the selected TLB entry is used as a gate to control the final
selection of the Trap signal generated from the previously selected n PVLB entries. Note that the operations on
the PVLB are executed in parallel with the operations on the TLB, except for the final selection of the PVLB
output. Hence, if amemory reference does not generate a paragraph validation Trap, no significant extra delay
will be suffered by going through this additional PVLB unit compared to a traditional MMU.

The control unit of the DMMU contains the logic to manage the retrieval of entries from the PTs and the
PVTs in the dual-ported memory. It also controls the TLB and PLVB update operations, and handles other
related activities. When the retrieval of the entries of the PVT fails, the DMMU triggers a PVT trap resulting
into a home—injfo fault as described in section 3.1. Other paragraph validation faults are generated by the PVLB

as described above.

4. Performance Analysis

The performance of a DICE DSM system is mainly affected by the delays encountered in handling differ-
ent paragraph validation faults, which in turn depends on the execution delay of messages sent over the net-
work to resolve paragraph faults. In the following analysis, a performance metric is first defined. The system
and network model is presented. Thereafter, the application behavior model along with the protocol cost are
described. Finally, the performance results for different combinations of system configurations and applica-

tion profiles are shown and discussed.

4.1. Performance Metric

The performance of parallel systems is often measured in terms of speedup, which is the ratio of the execu-
tion time of a program run on a single processor to that run on a parallel system. We limit ourselves to the
speedup for the parallel part of an application only. We define the speedup for the parallel part of an applica-

tion, S, , as the ratio of the execution time of the parallel part of an application running on a single processor to

that running on a DICE DSM system.



Let us denote T and 7, to be the total execution time for the parallel part of an application by a single

node and by N nodes in a DICE DSM system, respectively. Let the processor speed of a single node be denoted

by R, MIPS. Letthe total number of instructions required to be executed in the parallel part of the application

be denoted by I, , and the average rate of shared data memory accesses per instruction be denoted by d; . Then,

= L - 1
Ts - RP and Tdun - N (RP + ds ’- Tpco:t) ( 1)
where T, denotes the average protocol cost per shared data memory access, and will be derived in the fol-

lowing subsections, using an analytical system model. The term d, I, T, represents the total overhead,

when using the DICE DSM. The speedup for the parallel part of an application S, is therefore:

= N (2)

s, = I
1+d,R, Tpom

P Td

4.2. Network and System Model

In this analysis, a high—speed, low-latency ATM network is assumed to be the underlying local computer
network. The queuing time on the network is assumed to be small enough to be neglected. (A future study is
examining the effects of queuing delays.) The memory access unit is assumed to be one word (or four bytes).
Each paragraph has G words. An application is executed by N nodes.

A typical ATM network consists of a set of nodes connected via a mesh of switches. In an ATM network,
data is segmented into small fixed-length cells, routed, then reassembled at the destination using header infor-
mation contained in the cells. Due to the efficient structure of ATM frames, the waiting time for accessing the

network can be designed to be very short. In this model, each network message with length L., takes

te + Nyl Processing time at the transmitting and the receiving nodes, n_, L., /R, transmission time,

fix

andn_,;t,, processingtime throughan ATM switch; wheren_, is the number of cells needed to transmit the
whole message, or the ceiling of L, /(L , — L) ; L,y and L, arecellsize and header lengths, respective-

ly;¢ e andt,,, are fixed and variable parts of processing delays in the communicating nodes, respectively; R,, is
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the network data rate; r,, is the average network switch latency a cell goes through in a typical ATM network.

Note that the processing time at the nodes includes the time for copying data between host memory and net-
work buffer, network processor latency, interrupt handling on reception of frames, and segmentation/reas-
sembly times.

The protocol cost is analyzed based on the time it takes for handling different kinds of paragraph validation
faults. This analysis includes all but h~ome—info faults, since they only occur when a page is accessed by anode
for the first time. The fault handling time is expressed in terms of the total time for handling network messages,
including required interrupt handling delays at the local and remote nodes.

The whole message for either fault request or invalidation request can fit into a single ATM cell. The
messages for datareply will have the size of a paragraph, which may need one, two or more ATM cells depend-
ing on the size of the paragraph. The costs for these two different sizes of network messages, denoted by re-

quest messages, msg—r, and data messages, msg—d, are

tmeg_r = LF;:” + by + tyay F boae (3)
b= [ ] 5t [ =] o + (4
meg—d Lc.ll - Lhd Rn ™ Lc.a - Lhd il ne

From the memory coherency protocol, one can count the number of network messages involved in each
kind of fault. This message count also depends on the home and owner node relationship, as well as the number
of nodes within the copyset (the list of nodes with read—only copies of a paragraph), when a fault occurs. After

examining the protocol, one concludes that the cost of message are as follows: tpg—, + 1, , for case el and

for case nwd, and 2N, tp, ., for case

case nrd, U, + 2 for case e2, (2N + Dljpg—, + ¢

msg~d msg—~d

nwa. Here, N, denotes the number of nodes within the copyset, when a fault occurs. Cases el and eZ repre-
sent the situation when a fault occurs while the copyset on the home node is empty. The former is the case when

the owner is the home, or when the requesting node is the hiome node. The latter is the case when the owner is

not the home and the requesting node is not the home node. Cases nrd and nwd and nwa represent the situa-
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tions for a read fault, a write—data fault, and a write—access fault occurrence, when the copyset on the home
node is not empty, respectively.

The average time spent for handling a paragraph fault depends on the probability of each of the above
cases as well as the probability of the number of nodes within the copyset, when a fault occurs. These probabil-
ities are estimated by simple probability models in this work. When a fault occurs, each node has equal proba-

bilities of 1/N for having accessed and of (1 — 1/N) for not having accessed this paragraph since the last time

the copyset was empty. Hence, the probability that the copyset is empty, when a fault occurs, is the case that
either none or any one node having accessed this paragraph. The probability that the number of nodes within

the copyset is i, when a fault occurs, denoted by p{N,,, = i} , isthe case when any i+/ nodes have accessed

the paragraph. Therefore, we have
PN, = 0} = (NMehe - B s (Ve e - = 2 = oo - o ()
P{Ny =i} = (l 51)({,—)‘“ (1- %)"*"‘ fori = 1,2,3,...,.N - 1 (6)

In the DICE DSM, it is expected that a paragraph is accessed by its home node most frequently. Letx,

denote the probability that a paragraph is accessed by its home node. Other nodes are assumed to exhibit a
paragraph access probability that is uniformly distributed among all the non—home nodes with a total probabil-

ity of 1 — x, . Note that x, reflects the processor locality of paralle]l program behavior as described in [8].

The probability of each case is estimated by finding the conditional probabilities of each case, when either

read or write access faults occur. The probability of case nrd fault is 1. The rest of the probabilities are

- (N - 2)(1 - xs)
Pe = 3(N—1)x, + (N-2)(1 — xJ) Pe:

’

1 = Pa2 (7)

(N-1-N(-x)

vad(Nnd) = (N - 1)X, + Nm“ — X,) + (N -1 - N”‘)ﬁ — X,) pm(Nut) =1- vad(Nsoi) (8)

wherep,,,P,5,P,,,4 » &1d Ppy, are the probabilities of case e/, case e2, case nwd, and case nwa, respectively.
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The average time spent for handling a paragraph read or write fault, denoted by ¢ . and¢ wf » 2N be obtained

from Equations (3) through (8). After some simplification, we have

ty= 1+ PNy = 0p Ny —r + Ly (9)
N-1
tyr = [P(Nset = )1 +p,) + > PNy = il s tmsg—r + by ) (10)
i=1
N-1

+ D PNy = if)Umeg )

i=1

4.3. Application Behavior Model and Average Protocol Cost

Torrellas et al. [19] proposed a model of sharing, which is classified into true sharing and false sharing.

Based on this sharing model, we divide the average protocol cost, 7, , into two parts: one part is caused by

true sharing misses, the other part is caused by false sharing misses. A miss is a true sharing miss, when a
processor or node misses, because the word was previously used by another node. A false sharing miss is
caused by multiple processors or nodes accessing different words within the same paragraph.

In this analysis, we first consider the application behavior independent of system architecture. The sharing
misses are based on an access unit (word), as the same way in the work done by Eggers and Katz in [7], instead
of a coherency unit (paragraph). Then, we integrate it with the effects of using a paragraph size consisting of
multiple words.

True sharing misses are varied significantly for different parallel applications, since they inherently de-
pend on the program behavior. True sharing misses are expected to increase as the number of processors or
nodes increases, since the frequencies and degrees of sharing increase. Hence, we use a simple linear relation-

ship to model this behavior. Letf, and f,, denote the average rate of read faults per shared read data memory

access and average rate of write faults per shared write data memory access, respectively. Then, we have
fr=fgt/faN and Jo =F,9 tfuxN (11)

wheref,, andf, ; are the base points of f, andf,, , respectively; f,, andf,, are the incremental rates off, andf,,
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when the number of nodes is changed, respectively. Note thatf, andf, reflect the temporal locality of parallel

program behavior.

When paragraphs, larger than a single word, are taken into account, the true sharing misses are expected to
drop as the paragraph size increases. This is due to the spatial locality of a parallel program behavior, and the
neighboring data having been prefetched before being used. Note that we consider the sharing misses only
caused by the coherency protocol, and ignore those caused by insufficient physical memory to allocate space.

We use the ratio of miss ratios, proposed by Smith in [16], to model the effects of this behavior. Letm  and
m,, denote the ratio of miss ratios when a paragraph size is G to that when a paragraph size is one word, and

when a paragraph size is G to that when a paragraph size is G/2, respectively. Then, we have

— log,G (12)
m, =m.=
Several research results [2,6,18] indicate that false sharing will be increased, when either the number of
processors or the coherency unit size is increased. Hence, we also use asimple linear relationship to model this

behavior. Lete 5 denote the probability of false sharing misses. Then, we have

€ = €59 + Efst + efsyG (13)

where ¢ 0 is the base point of ¢, ; ¢ fox and ¢ £y TC the incremental rates of ¢, , when N and G are changed,

respectively.

Combining Equations (9) through (13), one can derive the average protocol cost Tpcm as

Tpcost =m,[(1 - w)frt,f + wfwtwf] + €,[(1 - w)t,f + Wtwf] (14)

where w denotes the average rate of write operations per shared data memory access. In the above equation, the
two terms on the right side represent the protocol costs caused by true sharing misses and false sharing misses,

respectively.

4.4. Analytical Results

This section shows the effects of changing system structure and application profile on the speedup, S, . A
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typical value for each parameter is chosen to reflect a typical system architecture and a target parallel applica-

tion profile. We analyzed the effects on §, by only changing one or two parameters at a time and fixing other

parameters to their typical values.
For program behavior parameters, the typical degree of sharing and access pattern are chosen to be 0.1 for

both d;and w. The typical fault rates are chosen to be 0.001 for bothf ; andf, ,, and 0.001 for both . andf,, .
The typical locality factors are chosen to be 0.6 and 0.5 for m,, andx, . Typical false sharing factors are chosen
to be 0.0001 for ¢ 0 and 0.00001 for both ¢ fox and e fy These typical values are intended to represent the suit-

able network—based DSM applications and to reflect the significant effects of localities as well as false sharing.

For system parameters, the lengths for an ATM cell and header are fixed to 53 and 5 bytes, respectively.
Other parameters are varied to reflect the changes in of system technology and architecture. The typical system
is chosen to have 16 nodes and 100 MIPS. The typical network data rate is chosen to be 150 Mbps. The typical

ATM processing time is chosen to be 10 and 20 microseconds for Lo and ¢,,, , respectively. This is derived
from the actual measurements of an ATM host-network interface in [4]. While, ¢,,,, is chosen to be 10 microse-

conds, which corresponds to the store—forward delay time of a single switch for an ATM LAN.

Figures 4 through 13 show the expected behavior of S, , when the size of a paragraph, G, is changed. This
behavior indicates that S, increases as the paragraph size G increases up to a certain point. After that
point, S, starts decreasing as G further increases. The peak values of S, is when the paragraph size G is be-
tween 32 and 256 bytes. This is less than the page size used in a common operating system. This behavior
demonstrates the advantage of using a two-tier paging scheme. Note that the fixed small cell size (53 bytes)
used in ATM networks leads to the abnormal dent at a granularity of 64 bytes shown in Figures 5 through 9 and
11.

Figures 4 and 5 show that S, decreases as the average rate of shared data memory accesses per instruction

d, ,and the average rate of write operations per shared data memory access w increases, respectively. Figures 6
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and 7 show that S, decreases as the fault rate parameters (i.e. f o +fuorf -andf,, ) increase. Figure 8 shows
that S, decreases as the ratio of miss ratios m,, increases. Figure 9 shows that S, decreases as the false sharing
parameters (i.e. ¢ 07 Epc and ¢ f ) increase. Figure 10 shows that S, increases as the probability of a para-
graph being accessed by its home node x, increases.

Figure 11 shows that S, decreases as the processor speed R, increases, as the benefits of parallel processing
diminish due to the increase in ratio of network overhead to execution time on each node. Note that the total
execution time for an application will still drop asR, increases, although S, decreases. This asserts an impor-
tant expected fact that as processor speeds increase, it is important to reduce network overhead in order to ac-
complish the same high level of speedup.

Figure 12 shows that S, increases as the network data rate R, increases, and that the margin of gain in

S, becomes smaller and smaller as the network datarate R, increases. Figure 13 shows that S, decreases as

the ATM processing and switching times (i.e. ¢__, t,,, , and ¢,,, ) increase.

Figures 14 and 15 demonstrate the relationship of S, and S, /N with the number of nodes for different
paragraph sizes, respectively. S, increases as N increases, and the margin of gainin S, becomes smaller when
N is large.

5. Conclusions

In this paper, we present the design of a two—tier paging system for distributed shared memory,
where a paragraph, a much smaller memory unit than a page, is employed as the unit of coherency. The
system is modeled and the analysis demonstrates the benefits of the multiple granularity memory manage-
ment. The problem of false—sharing is alleviated, especially for systems with large page size and large objects.
The network latency for coherence maintenance is significantly reduced, since only a small amount of data has
to be transferred across the network for each remote memory access fault. Furthermore, the overhead of the
coherency protocol processing is reduced by introducing hardware support.

The proposed two—tier paging scheme is different from the two—level paging method used in a uniproces-
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sor system. The latter bears two levels of address translations. In our two—tier paging design, the page is the
only address translation unit and the paragraph is the validation unit. There is no address translation for para-
graphs.

The concept of using a second tier page. namely a paragraph, is different from that of using a cache line.
The size of a paragraph is normally larger than a cache line. Although the paragraph coherency protocol and
algorithm is similar to the one used in cache-based DSM multiprocessor systems, the design and implementa-
tion consideration are quite different. In a network based distributed shared memory system communication
latency is significantly higher than that seen in a multiprocessor distributed shared memory system such as
DASH [12]. Network based DSMs are implemented in software with hardware support, while multiprocessor
based DSMs are implemented in hardware. Therefore, the allocation of and access to the coherency directories
are quite different.

The use of paragraphs as opposed to using a small page size reduces the complexity of the shared memory
management . If a small page size is used, very large page map tables will be required. By preserving the large
page size and using paragraphs only for shared pages the page map tables stay small and additional paragraph
map tables are needed for shared pages only. In addition to using the home node scheme we have distributed
the management of paragraphs to the home nodes of the pages only. Hence, the root node acts as the clearing
house for ail application pages, and the home nodes act as the clearing houses for the paragraphs in their respec-
tive pages to which they are home.

A trace—driven simulation model that takes into consideration network queuing delays is under develop-
ment. This simulation model will be used to validate the analytical model described in section 4. This simula-
tion model is built with BONeS DESIGNER[5], and the traces are generated by Tango Lite{10] when running
the parallel applications of Stanford SPLASH[16].

The current DICE DSM design is based on a strict consistency model and a write-invalidate coherency
protocol. Extensions by using multiple consistency and coherency protocols are under consideration. In future

version of DICE we plan to incorporate support for a relaxed consistency model to hide the large latency of
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remote memory accesses by allowing buffering and merging.
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DICE - a Distributed Integrated Computing
Environment for Multi-Threaded Parallel Processing*

Hasan S. AlKhatib, Qiang Li, Chi-Jiunn Jou, Tiekun Chen, and Hassan Arafeh
Department of Computer Engineering , Santa Clara University
Santa Clara, CA 95053

Abstract ~ Often, the computing power of networks of
workstations is left unused. The objective of this project is to
develop a set of tools to take advantage of this potential com-
puting power and to create a platform suitable for large scien-
afic computations. This paper presents the architecture of a
Distributed Integrated Computing Environment (DICE)
consisting of a cluster of networked workstations. DICE
consists of three interactive subsystems. DSM (distributed
shared memory) provides the underlying communication
and computing paradigm for threads of a parailel task to ex-
ecute on a cluster of cooperating workstations. DRS (distrib-
uted run—time subsystem) provides users with programming
tools to develop and execute DICE multi~threaded applica-
nions. PS (parallel scheduler) is a self optimizing application
specific scheduler, and is responsible for thread scheduling
and synchronization.

1. Introduction

The majority of scientific applications require a fairly
large amount of memory to execute a task. If a task is to
be partitioned into threads (sub-tasks) that are executed
in parallel. memory sharing is very desirable, since it al-
lows sharing variables among threads within the same
task. Also, software based on shared memory is more
portable and machine independent as compared to that
of distributed memory which is architecture dependent.
The shared memory muitiprocessor system has been
more and more popular for executing large scientific
applications for these reasons.

On the other hand, there is a tremendous amount of
computing power that is left unused in networks of work-
stations. Very often a workstation is simply sitting idle on
adesk. A set of tools can be developed to take advantage
of this potential computing power to create a platform
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number NCC 2-644 entitled "Parallel Processing for Scientific
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suitable for large scientific computations. The integra-
tion of several workstations into a logical cluster of dis-
tributed. cooperative, computing station presents an al-
ternative solution to shared memory multiprocessor
systems.

DICE (Distributed Integrated Computing Environ-
ment) is designed to meet these objectives. DICE em-
ploys virtual memory supported distributed shared
memory(DSM) as its underlying computing and commu-
nication paradigm. [t integrates DSM with a parallet
scheduling as well as a parallel programming subsystem.
In Figure 1, a distributed task '1’ is running on four work-
stations, while a distributed task 2’ is running on three
workstations. These distributed tasks are independent
of each other, and a workstation may have threads of two
or more tasks running on it, concurrently.

This paper presents the DICE architecture in the fol-
lowing sections. Section 2 identifies the related work in
this area. Section 3 describes the system architecture of
DICE. 1t consists of three subsystems, which are de-
scribed in sections 4 to 6, respectively. The interaction
among these subsystems is delineated in section 7. The
expected system performance is shown in section 8. Fi-
nally, section 9 gives a summary of the results accom-
plished with this work.

Distributed
Task

Distributed
Task 2

Figure 1. Clusters of Cooperating Workstations
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2. Related Work

There are several systems designed to utilize the pro-
cessor power of idle workstations. These systems include
Sprite [24], V system [33], NEST [1], Butler [23], Condor
[20], REM (30], Stealth [17], and Sidle [16]. These sys-
tems provide remote execution or process migration faci-
lities. In addition to these features, DICE provides the
distributed shared memory (DSM) paradigm while using
these idle workstations.

A number of DSM systems over LANs have been de-
veloped recently [31]. Among them. Ivy [18,19] is im-
plemented on a network of Apollo workstations. The
memory is paged, and copies of pages may be replicated
in different hosts. Strict coherency semantics are used,
and the memory coherency is maintained by a write-in-
validate with dynamic ownership protocol. The owner of
a page is located via either a centralized manager, fixed
distributed managers, or an individual host which for-
wards the request. Ivyis used for applications employing
a multi-threaded task. All threads share the same virtu-
al address space. False sharing may occur in this system,
since its consistency or access unit (eg. word) is less than
the sharing unit (page). In addition, the single-write na-
ture of its protocol may cause a “ping-pong” behavior be-
tween multiple writers of a shared page, or the thrashing
problem.

To overcome false-sharing and thrashing, some sys-
tems employ special schemes. Mach [14] supports the
DSM with a shared memory server. False-sharing and
thrashing are handled by fault scheduling via a queuing
mechanism [13]. Clouds {27,2] is an object-oriented dis-
tributed operating system where objects can migrate
across processors. False sharing and thrashing are
avoided, since Clouds uses a single-writer-single-read-
er strict coherence semantics.

Mirage [12] isa DSM system implemented in the ker-
nel of the Locus distributed system [34]. Thrashing is re-
duced by using a time window scheme, in which the sys-
tem guarantees that the writer of a page retains access to
a page for a fixed period of time. Munin [6,7] is a DSM
system implemented on the top of the V kemel [9],
which allows programmers to associate types with shared
data. Hence. multiple consistency protocols can be used.
A delay write update scheme is used for a read-mostly
protocol. Hence, thrashing can be reduced by using dif-
ferent combinations of data types.

Mether [21.22] is a software DSM implemented on
SunOS§ 4.0. It allows a process to access memory as either
consistent or inconsistent. and only a subset of a page to
be transferred. It also provides both demand-driven and
data-driven semantics for updating pages. All of these
operations are encoded in a few address bits in the virtu-

al address. False sharing and thrashing is reduced
through the use of the incoherent memory.

DICE presents a novel approach to handle the prob-
lem of false sharing and thrashing. The shared memory
is structured as a two-tier paging system. The first tier is
a page, which is the common page used in an operating
system. The second tier is a paragraph, which is a smaller
fixed-sized block of information contained within a page.
The introduction of smail paragraph size improves sys-
tem performance, since it reduces the chance of faise
sharing and the amount of data needed to be transferred
over the network.

Distributed run-time system, DRS is another part of
DICE. A survey of object-oriented languages for paral-
let environments is presented in (36]. Other program-
ming languages and systems developed for distributed
systems are presented in {4]. Amber (8] and Orca [5.32]
are two such systems.

Parallel scheduler, PS is the third part of DICE. Sev-
eral approaches are taken by researchers at work on the
problem of parallel scheduling. They range from cen-
tralized control where global knowledge of the system is
maintained in one place [25,26], to distributed control
where all nodes have equal knowledge of the system.
Methods used vary from Baysian decision theory (28] to
data flow graphs [10].

The parallel scheduler in DICE is an extension to our
prior work done in MOPPS [3]. MOPPS is a seif-tuning
parallel scheduler. It partitions the given application
into small tasks, schedules and coordinates these tasks
among network resources, and maintains a balanced load
between workstations without overburdening the com-
munication network.

3. System Structure

DICE is an experimental system which aims at pro-
viding a computing environment for the execution of
multi-threaded tasks. Figure 2 illustrates the system

workstation 1 workstation 2 workstation n
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Figure 2. System Architecture of DICE
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structure of DICE. A parailel task may consist of multi-
ple threads that can be scheduled to run on a cluster of
workstations, simultaneously. Athread isan active entity
that provides the notion of a computation. Threads on
separate workstations also share the same virtual ad-
dress space, and communicate with each other using
shared memory. Synchronization of threads to access
shared resources is done using functions provided by the
distributed run-time library.

4. Distributed Shared Memory

DICE DSM system consists of a cluster of worksta-
tions connected by a high-speed and low-latency local
area network. Other than a host processor and memory,
each node also has a network processor and a Distributed
Shared Memory Management Unit (DSMMU). DSMMU is
an extension of the traditional MMU to allow DSM to
handle shared memory efficiently. When data is not
available locally and needs to be fetched from a remote
host, DSMMU will trigger special access faults. Other-
wise, DSMMU just performs the traditional TLB opera-
tions. An example of the architecture of a single host sys-
tem is shown in Figure 3. Note that this example uses
dual-ported memory, which allows both host processor
and network processor to access the data structures for
managing shared memory.

Each page of DICE DSM is the same as the common
page in a typical operating system, such as the SunOS.
Each page is further divided into several small equal-
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Figure 3. The system structure of a host system.

sized paragraphs. Paragraphs are used as the unit for co-
herency. Pages are used as the unit for sharing. Memory
is allocated in a segment which may contain one or more
pages. Figure 4 illustrates the hybnd nature of this
memory structure.

Coherency Protocol

DICE mainly provides the computing environment
for the execution of multi-threaded tasks. A parallel
task consists of multiple threads that are scheduled to
run on a cluster of workstations. simultaneously. The
shared data of memory pages are also distributed and
replicated among these hosts. The DSM sysiem sup-
ports the sharing of those pages, and maintains the co-
herency among replicated data copies. Each running
application has a roor host, on which it was loaded and ex-
ecuted. The root host maintains the state information
for all shared pages used in the application, while other
hosts maintain the state information for only the shared
pages that are used in their local systems.

DICE is a home-based virtual DSM system, in which
each shared page has a home host. A home host main-
tains the state information for its pages, ensures that the
last copy of a page is not purged. and keeps track of all
copies of the paragraphs within its pages. Other hosts
only keep the information about the locations of the
home host. A remote request for handling memory ac-
cess faults is always sent to the home host of the target
page. When a host does not know the home host for a
certain page and tries to access it, a home-info fault will
be triggered and a home—info request will be sent to the
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Paragraphs
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Figure 4. Segments, pages. paragraphs in
DICE DSM structure
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root host. If the home host is not yet assigned, the root
host will assign the first requesting host to be home host
of that page, update its own database, and send back a
reply confirming this assignment. Otherwise, the root
host simply sends back a reply giving the information of
the home host for that page.

The memory coherency of DICE DSM is maintained
on paragraph level. Each paragraph has an owner host,
which has the ownership of this paragraph. An owner
host always has an up-to~date copy of its paragraph, and
is the only host which permits to write to the paragraph.
The ownership of a paragraph may be transferred from
one host to another according to the coherency protocol.
Information about the current owner of a paragraph is
maintained at the home host of the page containing the
paragraph.

A paragraph can simultaneously be read by multiple
hosts, but it can only be written by its current owner host.
The access right of a paragraph for a particular host may
be either read-write, read-only, or none. A host can ac-
quire or upgrade its access rights by sending requests to
the home host of the page in which the desired paragraph
resides.

A host can immediately perform read and write oper-
ations on a paragraph if it has read-write access for that
paragraph, or perform read operations on a paragraph if
it has read-only access for that paragraph. When a read
operation is issued to a paragraph with none rights, a
read-dara fault will be triggered and a read-data request
will be sent to its home host. When a write operation is
issued to a paragraph with none rights, a write-data fauit
will be triggered and a write-data request will be sent to
its home host. When a write operation is issued toa para-
graph with read-only access, a write-access fault will be
triggered and a wrire-access request will be sent to its
home host.

When a page is initialized, the home host is the default
owner host for all paragraphs within this page. Any other
host will send a remote request to the home host when it
tries to access any paragraph of this page. If a read-data
request is received. the home host will return back a re-
ply containing the most recent copy of the desired para-
graph when itself is the owner host of that paragraph.
The access rights of both home and requesting hosts are
changed to read-onty. If itself is not the owner host. the
home host will forward this read-dara request to the
owner host of that paragraph. ‘The latter changes its ac-
cess right to read-only. and-then directly sends to the re-
questing host a reply which contains the most recent copy
of that paragraph. After it receives the reply. the re-
questing host changes its access right to read-only and
sends to the owner host an acknowledgement with the
received reply. Having received this acknowledgement
with reply, the home host also changes its access right to
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read-oniy and becomes the owner host of that paragraph.
If itself is the requesting host, the home host will directly
send the read—-data request to the owner host. The latter
changes its access right to read-only, and then sends back
a reply which contains the most recent copy of that para-
graph. Having received this reply, the home host
changes its access right to read—only and becomes the
owner host of that paragraph.

If a write~-data request is received. the home host will
return back a reply containing the most recent copy of
the desired paragraph when itself is the owner host and
no other host has a valid copy of that paragraph. If multi-
ple valid copies exist. the home host will send invalidare
requests to all hosts on which those copies are located.
and wait for confirmations from all of them before re-
turning back the reply. Upon receiving the invalidate re-
quest, each host changes its access right of that para-
graph to none and returns its confirmation to the home
host. The access right of the home host is then changed
to none, while the requesting host becomes the owner
host and its access right is changed to read-write. If itseif
is not the owner host. the home host will forward this wri-
te-data request to the owner host of that paragraph. The
latter changes its access right to none, and then directly
sends to the requesting host a reply which contains the
most recent copy of that paragraph. After it receives the
reply, the requesting host changes its access right to
read-write and sends an acknowledgement to the owner
host. Having received this acknowledgement, the home
host updates its database and indicates that the request-
ing host becomes the owner host of that paragraph. If
itself is the requesting host, the home host will directly
send the write-data request to the owner host. The latter
changes its access right to none, and then sends back a
reply which contains the most recent copy of that para-
graph. Having received this reply, the home host
changes its access right to read-wrize and becomes the
owner host of that paragraph.

If a wrire—access request is received. the home host will
return back the write~access confirmation when no other
host has a valid copy of that paragraph. If three or more
valid copies exist, the home host will send invalidate re-
quests to all hosts (except itself and the requesting host)
on which those copies are located and wait for confirma-
tions from all of them before returning back the wrire-ac-
cess confirmation. Upon receiving the invalidare request,
each host changes its access right of that paragraph to
none and returns its confirmation to the home host. The
access right of the home host is then changed to nore,
while the requesting host becomes the owner host and its
access right is changed to read-write. If itself is the re-
questing host. the home host will directly send the invaii-
date requests to all hosts (except itself and the requesting
host) which have valid copies of that paragraph and wait
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for confirmations from all of them. Upon receiving the
invalidate request, each host changes its access right to
none and returns its confirmation to the home host. The
home host then changes its access right to read-write and
becomes the owner host of that paragraph.

3. Distributed Run-time Subsystem

DICE DRS transforms the DICE DSM from a flat
space into an object-oriented structured space. DRS
consists of a set of tools that implement DICE. Applica-
tion Programmer’s [nterface. API, provides users with
programming tools to develop and execute DICE multi-
threaded applications. The tools used during program
development include a parallel language and its compil-
er, library interface functions, a linker. and other system
services.

A new Object-Oriented Dataflow Language (OODL) is
being designed as the parallel language used in DICE.
One of the important features of object-oriented pro-
gramming is information hiding and encapsulation
[11,29]. It provides a higher level of data abstraction in
modeling real world objects. Such constructs are helpful
in designing parallel programs {35]. In general, parallel
programs are difficuit to design because the programmer
must consider muitiple execution threads instead of a
single thread. All possible interactions among the
threads must be considered. Also, paraliel programs are
hard to maintain because a simple change may affect the
interaction pattern and results in global consequences.
Information hiding helps in reducing possible interac-
tions that need to be considered, while data encapsula-
tion helps in minimizing the maintenance effort when
program changes are needed.

While the object-oriented model provides a high level
of programming abstraction, it does not naturally exploit
parallelism of applications constructed with objects. A
dataflow model can expose and exploit the maximum
amount of parallelism, as well as express data depen-
dence from different levels of abstraction in a very natu-
ral way. The combination of the object oriented and da-
taflow concepts makes it easier for programmers to
design large scale multi-threaded parallel programs. and
to build re-usable concurrent software modules.

The OODL language, in DICE, is an extension of
C+ +. Dataflow constructs are added to allow program-
mers to express parailelism explicitly. The parallel com-
piler can be realized using a preprocessor to transiate the
extended source code into C+ + programs, which in
turn are compiled into object code using an existing
C+ + compiler.

The run-time library interface functions provide a col-
lection of library routines that are linked with each paral-
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lel program. They are invoked to support the service re-
quests made by system processes at run-uime. The
OODL compiler will use these functions to realize the
parallelism expressed in the application programs.
These functions can also be used by the appiication di-
rectly.

The linker will create a standard execution file suchas
a.out and an execution dependency tree called a.tree.
The information kept in the dependency tree includes
the names of the paralle! threads; information about the
resources of the threads, such as starting address and
memory requirements; and the predecessors and succes-
sors of each thread. This information will be used by the
paralle! scheduler to create and allocate shared memory
segments, and to schedule threads on different worksta-
tions at run-time. The linker will arrange shared vari-
ables into shared segments, to simplify the management
of shared memory by the DSM subsystem.

DRS also provide services for executing applications
at load-time and run-time. These services include the
use of the DICE daemon(s), as well as the automatic cre-
ation of a root process and alias remote processes for a
parallel task.

For each workstation that participates in DICE, a dae-
mon process has to be present. This daemon is responsi-
ble for invoking DICE alias processes on remote worksta-
tions. Each DICE application creates a rool process
when it starts. The workstation where the root process is
running is referred to as the root workstation. A DICE
application may have zero or more alias processes. An
alias process is created by the root process on a remote
workstation through a DICE daemon as needed.

The root process is a multi-threaded process which
runs on the root workstation. It is created when the par-
allel task is submitted to the system. InDICE, the thread
is the unit of execution, while a process is the unit of re-
source allocation. Each process contains one or more
threads. The root process provides the virtual address
and system resources for threads running on the root
workstation. The root thread is the first thread of a par-
allel task. It is responsible for creating the parallel
scheduler and DSM manager threads before any applica-
tion threads start to run. It then becomes the first appli-
cation thread running on the root workstation. The root
process terminates when the parallel task is done.

An alias process is a reincarnation of the root process
on each remote workstation. An alias process is created
when a thread is scheduled to run on a remote worksta-
tion for the first time. The alias process supports the
same virtual address as the root process and system re-
sources for threads running on its workstation. These
threads include an alias primary thread, DSM manager,
and application threads. An alias primary thread is re-



sponsible for creating its local DSM manager as well as
the first application thread running on its local worksta-
tion. This alias primary thread, then, listens to thread-
create requests coming from the network. Subsequently,
it creates these requested threads of its own parallel task
on its local workstation. The alias primary thread and
DSM manager of a remote workstation will remain when
all of its application threads are terminated. The alias
primary thread waits for thread~-creation requests from
the parallel scheduler, while DSM manager waits for
memory access requests from other workstations. When
the root process is done, the parallel scheduler sends out
a termination signal to all the alias processes of that par-
ticular task. This is to ensure that all alias processes are
terminated before the termination of the root process.

The DICE daemon process is a server that is responsi-
ble for invoking alias processes on a remote workstation.
After invoking an alias process, the daemon process will
have nothing to do with this application task. It will go
back to listening to requests from the network. If a work-
station does not want to participate in DI/CE, it can simply
terminate this daemon process. A DSM manager is an
active entity on each workstation responsible for handl-
ing memory access faults. Each DSM manager maintains
a memory mapping tabie that maps each memory page to
its local workstation or other remote workstations.

6. Parallel Scheduler

DICE PS is a self-optimizing application~-specific
scheduler. It is responsible for thread scheduling and
synchronization. PS is implemented as a thread within
the parallel task. Each parallel task has one PS running
on the workstation where the task initially starts to run.
This special thread is created during the task load-time.

When an application needs to create another thread
or to terminate itself by joining with other threads, it
passes control of execution to the PS. The PS will find
the fastest way to run the application by using the infor-
mation in a Task Execution Dependence Tree, which is
created as an auxiliary file during the compilation of the
source program.

The PS decides whether the local workstation has
enough resources to run the different threads. which
threads to send to remote workstations to run. and which
remote workstations to send them to. It uses several
tools to make intelligent decisions at run time. Those
tools are: a CPU load estimator, a network load estimator,
an intelligent database, and a bidding process.

The CPU load estimator runs on every workstation on
the network and keeps track of the load on that worksta-
tion. When the time comes to run a thread on the local
CPU, PS looks at the CPU load estimator for information
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about the load on the local CPU. Simiiarly, when a bid
arrives at a workstation. the decision whether to accept
the bid or not depends partially on the readings taken by
the CPU load esumator.

The network load estimator monitors the traffic on the
network. The nerwork load estimator gives PS an up-to-
date reading of the network traffic. Smailer partitions
that takes a relatively short time to execute can become
too expensive to ship if transmission times become too
sever. In that case, it might be better to keep them on the
local workstation, defer shipping them, or combine two
or more into larger partitions.

The network load estimator has the responsibility to
provide PS with real time network traffic information.
The nerwork load estimator can be as simple as a bus moni-
tor which continually updates a register (interpreted as
an integer) signify network utilization levels of high, me-
dium, or [ow.

A small and efficient database records thread per-
formance on each workstations under different CPU and
network load conditions. This database allows the bid-
ding process to generate a reasonable estimate of the ex-
pected run time of a thread on a particular target work-
station.

The intelligent database is designed to categorize dif-
ferent higher level operations of modules and parame-
terize their computational and communication time re-
quirements. The contents of inrelligent database are
tailored to the installation where it resides. The data-
base is initiated with the types of applications being run,
and its contents are updated as new applications are in-
troduced.

When £S decides that it is best to send some threads to
a remote workstation to run, it needs a way to pick those
workstations. Instead of forcing other. possibly heavily
loaded, workstations to take some of the threads, PS asks
for help through the bidding process. It simply asks for
help in running a given thread and tells the other work-
stations about the memory and CPU requirements of the
thread. This information is found in the inzefligent dara-
base.

Upon each task completion, the intelligent database is
updated to reflect the most current experience. When
no data is available about an application. we can run it the
first time with gross overestimates, or underestimates,
and let inrelligent database iearn about it. Simulation may
also be used to obtain initial estimates.

It is essential that intelligent database be queried and
updated quickly as it would be a system bottleneck and
might slow down the entire system if not properly de-
signed. Ultimately inrelligent database can be implem-
ented in hardware as a content addressable memory.




In the bidding algorithm, PS weighs execution time
versus shipping and management time for each resident
module. If execution time is greater than shipping and
management time and the loads on the local workstation
is higher than a predefined threshoid, the parailel sched-
uler broadcasts a global message through the network
asking for help. This "help wanted” message includes
enough information about the module to be sent enab-
ling other workstations to determine if they can offer
their help. The information includes the estimated mod-
ule execution time, memory and disk requirements, and
any other information that is useful in making the deci-
sion.

Those workstations which can potentially bid to accept
the module for processing will examine this workload in-
formation and determine whether it is feasible tobid. Ifa
workstation is capable of assisting, it will return a mes-
sage stating its availability, and will commit to this bid for
a period long enough for the asking workstation to re-
ceive the return message and act on it. Through this pro-
cess, workstations that bid for help and are not accepted
will waste littie time before considering later "help
wanted” messages.

Each workstation will monitor the network before
sending its repiy to determine if any other workstations
have responded to the bid and will not send it reply if any
workstation did respond. It is assumed that the first
workstation to reply will get the job, and there is no need
for others to do so. PS sends the module to the first
workstation that replies to the request.

PS repeats the help wanted messages for a given task
until either it receives a response or the task is at the
point where it has to be executed in order not to delay the
rest of the tasks.

As a thread is scheduled on a remote workstations to
run, its respective virtual address space segments are al-
located physical memory biocks on the same worksta-
tions. PS takes the consideration of available memory re-
source on a workstation when scheduling a thread over

there.

7. Interactions and Integration

DSM, DRS, and PS are three separate subsystems of
DICE. They interact with each other to provide an inte-
grated environment and to cooperatively work to provide
the distributed computing paradigm for a parallel task.

After a parallel task is compiled and linked, a task ex-
ecution tree file a.tree is created. PS uses this tree to
perform the parallel thread scheduling. When a thread
is to be created. the root process will transfer execution
control to £S. The latter will use a.tree file to schedule it
on a local or remote workstation. and then transfer ex-
ecution control back to the application. Similarly, the ex-
ecution control will be transferred to PS when a thread
terminates itself by joining other threads. Figure 5 shows
the overall interaction between DRS and FS. The paral-
lel compiler and linker create the image of virtual
memory segments and the task execution tree. PS is in-
voked when a thread needs to fork or join with other
threads.

Furthermore, the root thread of DRS is responsible
for creating PS. The alias thread on each remote work-
station listens to remote thread creation requests sent by
PS, and creates threads locally.

Similarly, the active entity of the DSM subsystem
DSM thread is created by the root thread or alias threads
on different workstations. In the meantime. the data
structures needed by DSM thread are also created and
initialized.

The efficiency of handling shared memory by DSM
subsystem is significantly affected by the layout of shared
variables on DSM memory segments and the allocation
of physical memory on different workstations by the par-
allel programming subsystem and parallel scheduler.
Figure 6 shows an example of the run time behavior of
the DSM subsystem.
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In Figure 6, the virtual address space of the parallel
task is on the left side. Each shadowed paragraph within
the virtual address space represents a single virtual
memory segment. The physical address spaces on differ-
ent hosts are on the right side. The shadowed paragraph
within a host denotes a block of a physical memory, and
the other structure represents the segment map table.
The paragraphs with arrowheads represent the corre-
sponding mappings between the memory segments and
the physical memory blocks on different hosts.

8. Performance and Discussion

The performance of DICE DSM system has been stu-
died using an analytical model, which derives an expres-
sion for the speedup of the parallel part of an application (or

S, ). The effects of changing S, on system structure

and application behavior is shown and discussed in [15].
Some of these results are shown in this section. The sys-
tem and application parameters used in this model are
summarized in Table 1 in Appendix.’

High-speed and low-latency ATM LAN isassumed in
this model. We also assume that queuing time on the
network is negligible. This assumption is justified by the
results shown in Figure 7 (Appendix), which indicates

that the gain in S, becomes smaller and smaller as the
network data rate R, is increased. Figure 8 (Appendix)
shows that S, decreases as processor speed R, in-
creases. Note that the total execution time for an appli-
cation will still be reduced as R, increases, although
§, decreases.
Figure 9 (Appendix) shows that §, increases as the

number of paragraphs per page, X, increases up to a cer-
tain point. After that point, S, slightly decreases as &
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e

Virtual Address

Spacs Remote

Workstation 2
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further increases. Furthermore. S, is approximately

the same for a fixed paragraph size. which is £/« . This

behavior demonstrates usefulness of the use of a para-
graph with a smaller granularity than a page. Figure 10

(Appendix) shows a similar behavior, for S, in relation-
ship with the number of hosts N.

9. Conclusions

In this paper, we presents the architecture of a distrib-
uted computing environment D{CE, which integrates
distributed shared memory with parallel scheduling and
distributed run-time management. The analysis of per-
formance model demonstrates the usefulness of the use
of a paragraph with a smaller granularity than a page in
DICE system. This smaller granulanty reduces the
chance of false sharing and the data size needed to be
transferred over the network.

The coherency protocol for this two-tier paging sys-
tem is also being simulated in software. The perform-
ance of DICE DSM is also being evaluated using a simu-
lation model, which takes into consideration network
queuing delay. The Object-Oriented Dataflow Lan-
guage and self-tuning Parallel Scheduler are under de-
velopment.

The current DICE DSM design is based on the strict
consistency model and write-invalidate coherency pro-
tocol. This design is intended to be extended by using
multiple consistency and coherency protocols. Multipie
protocols will be used to tailor broader application re-
quirements. DICE will incorporate the DSM design
with a relaxed consistency model to hide the large laten-
cy of remote memory accesses by allowing buifering and
merging.
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Appendix
parameters meanings
N the number of hosts executing an appiication
Rn network data rate
Rp processor speed
M the total bytes of shared memory space for the running application
P page size
k the number of paragraphs per page
d the percentage of data memory accesses for total instructions
Nrf the number of read faults per 1,000,000 memory referenced per host
Nwf the number of write fauits per 1,000,000 memory referenced per host
Xs spatial locality factor
No, N1, g temporal locality factors

Tabie1. System and application parameters in the performance model.
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Figure 7. Sp vs k for different Rn. N=16, Rp=50Mips,
M=64kbytes, P=4kbytes, d=0.4, Nrf=500,
Nwf=10, Xs=0.5, N0=10, N1=100, g=100.
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Figure 9. Sp vs k for different P. N=16, Rn=150Mbps,
Rp=50Mips, M=64kbytes, d=0.4, Nrf=500,
Nwf=10, Xs=0.5, N0=10, N1=100, g=100.

Figure 8. Sp vs k for differentRp.N=16, Rn=150Mbps,
M=64kbytes, P=dkbytes, d=0.4, Nrf=500,
Nwf=10, Xs=0.5, N0=10, N1=100, g=100.
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Figure 10. Sp vs N for different k.Rn=150Mbps,d=0.4,
Rp=50Mips,M=64kbytes,P=4kbytes,Xs=0.5,
Nrf=500, Nwf=10, N0=10, N1=100, g=100.



